If it's not what You are looking for type in the equation solver your own equation and let us solve it.
18.4=19.62t^2-19t
We move all terms to the left:
18.4-(19.62t^2-19t)=0
We get rid of parentheses
-19.62t^2+19t+18.4=0
a = -19.62; b = 19; c = +18.4;
Δ = b2-4ac
Δ = 192-4·(-19.62)·18.4
Δ = 1805.032
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(19)-\sqrt{1805.032}}{2*-19.62}=\frac{-19-\sqrt{1805.032}}{-39.24} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(19)+\sqrt{1805.032}}{2*-19.62}=\frac{-19+\sqrt{1805.032}}{-39.24} $
| 3/7+7m/5=71/36 | | -3x+4=32 | | 36^3+6x^2=9x | | 3x+40=8-x | | 3x-5+130=13x+15 | | 11(1-10x)-2,x=-1 | | 5x+2/10=0 | | C+(c+49.50)=125.74 | | 6-7(x-3)=1 | | 11.2=4p+2 | | 19.62t^2+19t-58=0 | | 10a-37=6a-151 | | x^2-12.5x-14.5=0 | | 11/10-(5x-2)=1/4x-2 | | 3x-8(2x+3)=-6(2x+4) | | 20+5y-3=16y-10-2y | | r−14=2 | | 87=7+5(1-3m | | 4-5v=6v+18+3v | | 3(x-2)-9=7(x-9) | | 2y+-1+4=-13 | | 19.62t^2+25t-41=0 | | 28x-14=(3x-+2)2+3 | | (4x+16)+(2x-10)=180 | | -1/4d+2=8 | | |k+10=27 | | 8=15+n/3 | | -7(-2v+4)-3v=7(v-2)-8 | | 5x+6/10=0 | | 8(c+5)=72 | | (2/3)x=4/5 | | -12=5p-1=13 |